AB Calculus Exam – Review Sheet

A. Precalculus Type problems

When you see the words ... This is what you think of doing

	when you see the words	This is what you think of doing
A1	Find the zeros of $f(x)$.	
A2	Find the intersection of $f(x)$ and $g(x)$.	
A3	Show that $f(x)$ is even.	
A4	Show that $f(x)$ is odd.	
A5	Find domain of $f(x)$.	
A6	Find vertical asymptotes of $f(x)$.	
A7	If continuous function $f(x)$ has $f(a) < k$ and $f(b) > k$, explain why there must be a value c such that $a < c < b$ and $f(c) = k$.	

B. Limit Problems

	when you see the words	This is what you think of doing
B1	Find $\lim_{x \to a} f(x)$.	
B2	Find $\lim_{x \to a} f(x)$ where $f(x)$ is a	
	piecewise function.	
В3	Show that $f(x)$ is continuous.	
B4	Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.	
B5	Find horizontal asymptotes of $f(x)$.	

C. Derivatives, differentiability, and tangent lines

	When you see the words	This is what you think of doing
C1	Find the derivative of a function using the derivative definition.	
C2	Find the average rate of change of f on $[a, b]$.	
СЗ	Find the instantaneous rate of change of f at $x = a$.	
C4	Given a chart of x and $f(x)$ and selected values of x between a and b , approximate $f'(c)$ where c is a value between a and b .	
C5	Find the equation of the tangent line to f at (x_1, y_1) .	
C6	Find the equation of the normal line to f at (x_1, y_1) .	
C7	Find <i>x</i> -values of horizontal tangents to <i>f</i> .	
C8	Find <i>x</i> -values of vertical tangents to <i>f</i> .	
C9	Approximate the value of $f(x_1 + a)$ if you know the function goes through point (x_1, y_1) .	
C10	Find the derivative of $f(g(x))$.	
C11	The line $y = mx + b$ is tangent to the graph of $f(x)$ at (x_1, y_1) .	
C12	Find the derivative of the inverse to $f(x)$ at $x = a$.	
C13	Given a piecewise function, show it is differentiable at $x = a$ where the function rule splits.	

D. Applications of Derivatives

	when you see the words	This is what you think of doing
D1	Find critical values of $f(x)$.	
D2	Find the interval(s) where $f(x)$ is	
	increasing/decreasing.	
D3	Find points of relative extrema of $f(x)$.	
D4	Find inflection points of $f(x)$.	
D5	Find the absolute maximum or	
	minimum of $f(x)$ on $[a, b]$.	
D6	Find range of $f(x)$ on $(-\infty,\infty)$.	
D7	Find range of $f(x)$ on $[a, b]$	
D8	Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	
D9	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	
D10	Given a graph of $f'(x)$, determine	
	intervals where $f(x)$ is	
D : :	increasing/decreasing.	
D11	Determine whether the linear	
	approximation for $f(x_1 + a)$ over-	
	estimates or under-estimates $f(x_1 + a)$.	
D12	Find intervals where the slope of $f(x)$	
D12	is increasing.	
D13	Find the minimum slope of $f(x)$ on	
	[a, b].	

E. Integral Calculus

When you see the words ...

This is what you think of doing

	when you see the words	This is what you think of doing
E1	Approximate $\int_{a}^{b} f(x) dx$ using left	
	Riemann sums with <i>n</i> rectangles.	
E2	Approximate $\int_{a}^{b} f(x) dx$ using right	
	Riemann sums with <i>n</i> rectangles.	
E3	Approximate $\int_{a}^{b} f(x) dx$ using midpoint	
	Riemann sums.	
E4	Approximate $\int_{a}^{b} f(x) dx$ using	
	trapezoidal summation.	
E5	Find $\int_{b}^{a} f(x) dx$ where $a < b$.	
E8	Meaning of $\int_{a}^{x} f(t) dt$.	
E9	Given $\int_a^b f(x) dx$, find $\int_a^b [f(x) + k] dx$.	
E10	Given the value of $F(a)$ where the antiderivative of f is F , find $F(b)$.	
E11	Find $\frac{d}{dx} \int_{a}^{x} f(t) dt$.	
E12	Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$.	

F. Applications of Integral Calculus

When you see the words ...

This is what you think of doing

		when you see the words	inis is what you think of doing
	F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	
	F2		
	F2	Find the area between $f(x)$ and $g(x)$.	
L			
	F3	Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal	
		areas.	

When you see the words ... This is what you think of doing

	when you see the words	This is what you think of doing
F4	Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the	
	interval $[a, b]$.	
F5	Find the volume when the area	
	between $f(x)$ and $g(x)$ is rotated about	
	the <i>x</i> -axis.	
F6	Given a base bounded by	
	f(x) and $g(x)$ on $[a, b]$ the cross	
	sections of the solid perpendicular to	
	the <i>x</i> -axis are squares. Find the volume.	
F7	Solve the differential equation	
	$\frac{dy}{dx} = f(x)g(y).$	
	CCCC	
F8	Find the average value of $f(x)$ on	
	[a,b].	
70	7: 11	
F9	Find the average rate of change of	
	$F'(x)$ on $[t_1,t_2]$.	
F10	y is increasing proportionally to y.	
110	y is increasing proportionary to y.	
F11	Given dy draw a clara field	
	Given $\frac{dy}{dx}$, draw a slope field.	

G. Particle Motion and Rates of Change

G1	Given the position function $s(t)$ of a	
	particle moving along a straight line,	
	find the velocity and acceleration.	
G2	Given the velocity function	
	v(t) and $s(0)$, find $s(t)$.	
G3	Given the acceleration function $a(t)$ of	
	a particle at rest and $s(0)$, find $s(t)$.	
G4	Given the velocity function $v(t)$,	
	determine if a particle is speeding up or	
	slowing down at $t = k$.	
G5	Given the position function $s(t)$, find	
	the average velocity on $[t_1, t_2]$.	
	2.1.2	
G6	Given the position function $s(t)$, find	
	the instantaneous velocity at $t = k$.	

	When you see the words	This is what you think of doing
G7	Given the velocity function $v(t)$ on	
	$[t_1,t_2]$, find the minimum acceleration	
	of a particle.	
G8	Given the velocity function $v(t)$, find	
	the average velocity on $[t_1, t_2]$.	
G9	Given the velocity function $v(t)$,	
	determine the difference of position of	
	a particle on $[t_1, t_2]$.	
G10	Given the velocity function $v(t)$,	
	determine the distance a particle travels	
	on $\lfloor t_1, t_2 \rfloor$.	
G11	Calculate $\int_{0}^{t_{2}} v(t) dt$ without a	
	Calculate $\int_{t_1} v(t) dt$ without a	
	calculator.	
G12	Given the velocity function $v(t)$ and	
	s(0), find the greatest distance of the	
	particle from the starting position on	
	$[0,t_1].$	
G13	The volume of a solid is changing at	
	the rate of	
G14	b	
G14	The meaning of $\int_{-\infty}^{\infty} R'(t) dt$.	
	a	
G15	Given a water tank with g gallons	
	initially, filled at the rate of $F(t)$	
	gallons/min and emptied at the rate of	
	$E(t)$ gallons/min on $[t_1, t_2]$ a) The	
	amount of water in the tank at $t = m$	
	minutes. b) the rate the water amount is	
	changing at $t = m$ minutes and c) the time t when the water in the tank is at a	
	minimum or maximum.	
	minimum vi maximum.	

AB Calculus Exam – Review Sheet - Solutions

A. Precalculus Type problems

When you see the words ... This is what you think of doing

A1	Find the zeros of $f(x)$.	Set function equal to 0. Factor or use quadratic equation if quadratic. Graph to find zeros on calculator.
A2	Find the intersection of $f(x)$ and $g(x)$.	Set the two functions equal to each other. Find intersection on calculator.
A3	Show that $f(x)$ is even.	Show that $f(-x) = f(x)$. This shows that the graph of f is
A4	Show that $f(x)$ is odd.	symmetric to the <i>y</i> -axis. Show that $f(-x) = -f(x)$. This shows that the graph of <i>f</i> is
A5	Find domain of $f(x)$.	symmetric to the origin. Assume domain is $(-\infty,\infty)$. Restrict domains: denominators \neq
		0, square roots of only non-negative numbers, logarithm or natural log of only positive numbers.
A6	Find vertical asymptotes of $f(x)$.	Express $f(x)$ as a fraction, express numerator and denominator
		in factored form, and do any cancellations. Set denominator equal to 0.
A7	If continuous function $f(x)$ has	This is the Intermediate Value Theorem.
	f(a) < k and $f(b) > k$, explain why	
	there must be a value c such that	
	a < c < b and $f(c) = k$.	

B. Limit Problems

B1	Find $\lim_{x \to a} f(x)$.	Step 1: Find $f(a)$. If you get a zero in the denominator,
	<i>x</i> → <i>u</i>	Step 2: Factor numerator and denominator of $f(x)$. Do any
		cancellations and go back to Step 1. If you still get a
		zero in the denominator, the answer is either ∞ , $-\infty$,
		or does not exist. Check the signs of
		$\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ for equality.
B2	Find $\lim_{x \to a} f(x)$ where $f(x)$ is a	$\lim_{x \to a^{-}} f(x) \text{ and } \lim_{x \to a^{+}} f(x) \text{ for equality.}$ Determine if $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ by plugging in a to
	piecewise function.	f(x), x < a and $f(x), x > a$ for equality. If they are not equal, the
		limit doesn't exist.
В3	Show that $f(x)$ is continuous.	Show that 1) $\lim_{x \to a} f(x)$ exists
		2) $f(a)$ exists
		$3) \lim_{x \to a} f(x) = f(a)$
B4	Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$.	Express $f(x)$ as a fraction. Determine location of the highest
	2 - 2	power:
		Denominator: $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$
		Both Num and Denom: ratio of the highest power coefficients
		Numerator: $\lim_{x\to\infty} f(x) = \pm \infty$ (plug in large number)
B5	Find horizontal asymptotes of $f(x)$.	$\lim_{x \to \infty} f(x)$ and $\lim_{x \to -\infty} f(x)$

C. Derivatives, differentiability, and tangent lines

When you see the words	This is what you think of doing
when you see the words	I IIIS IS WHAT YOU THINK OF UOTING

	When you see the words	
C1	Find the derivative of a function using the derivative definition.	Find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ or $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
C2	Find the average rate of change of f on $[a, b]$.	Find $\lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$ or $\lim_{x\to a} \frac{f(x) - f(a)}{x - a}$ Find $\frac{f(b) - f(a)}{b - a}$ Find $f'(a)$
C3	Find the instantaneous rate of change of f at $x = a$.	Find $f'(a)$
C4	Given a chart of x and $f(x)$ and	Straddle c , using a value of $k \ge c$ and a value of
	selected values of x between a and b , approximate $f'(c)$ where c is a	$h \le c.$ $f'(c) \approx \frac{f(k) - f(h)}{k - h}$
C5	value between <i>a</i> and <i>b</i> .	
	Find the equation of the tangent line to f at (x_1, y_1) .	Find slope $m = f'(x_i)$. Then use point slope equation: $y - y_1 = m(x - x_1)$
C6	Find the equation of the normal line to f at (x_1, y_1) .	$y - y_1 = m(x - x_1)$ Find slope $m \perp = \frac{-1}{f'(x_i)}$. Then use point slope equation:
C7	Find <i>x</i> -values of horizontal tangents to <i>f</i> .	$y - y_1 = m(x - x_1)$ Write $f'(x)$ as a fraction. Set numerator of $f'(x) = 0$.
C8	Find <i>x</i> -values of vertical tangents to <i>f</i> .	Write $f'(x)$ as a fraction. Set denominator of $f'(x) = 0$.
C9	Approximate the value of $f(x_1 + a)$	Find slope $m = f'(x_i)$. Then use point slope equation:
	if you know the function goes	$y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$. Note:
	through point (x_1, y_1) .	The closer a is to 0, the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f(x_1 + a)$.
C10	Find the derivative of $f(g(x))$.	This is the chain rule. You are finding $f'(g(x)) \cdot g'(x)$.
C11	The line $y = mx + b$ is tangent to	Two relationships are true:
	the graph of $f(x)$ at (x_1, y_1) .	1) The function f and the line share the same slope at x_1 : $m = f'(x_1)$
		2) The function f and the line share the same y -value at x_1 .
C12	Find the derivative of the inverse to $f(x)$ at $x = a$.	 Follow this procedure: Interchange x and y in f(x). Plug the x-value into this equation and solve for y (you may need a calculator to solve graphically) Using the equation in 1) find dy/dx implicitly. Plug the y-value you found in 2) to dy/dx
C13	Given a piecewise function, show it is differentiable at $x = a$ where the function rule splits.	First, be sure that $f(x)$ is continuous at $x = a$. Then take the derivative of each piece and show that $\lim_{x \to a^{-}} f'(x) = \lim_{x \to a^{+}} f'(x)$.

D. Applications of Derivatives

	when you see the words	This is what you think of doing
D1	Find critical values of $f(x)$.	Find and express $f'(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve.
D2	Find the interval(s) where $f(x)$ is	Find critical values of $f'(x)$. Make a sign chart to find sign
	increasing/decreasing.	of $f'(x)$ in the intervals bounded by critical values.
		Positive means increasing, negative means decreasing.
D3	Find points of relative extrema of	Make a sign chart of $f'(x)$. At $x = c$ where the derivative
	f(x).	switches from negative to positive, there is a relative
		minimum. When the derivative switches from positive to
		negative, there is a relative maximum. To actually find the
		point, evaluate $f(c)$. OR if $f'(c) = 0$, then if $f''(c) > 0$,
		there is a relative minimum at $x = c$. If $f''(c) < 0$, there is a
D4		relative maximum at $x = c$. (2 nd Derivative test).
D4	Find inflection points of $f(x)$.	Find and express $f''(x)$ as a fraction. Set both numerator
		and denominator equal to zero and solve. Make a sign chart of $f''(x)$. Inflection points occur when $f''(x)$ witches from
		positive to negative or negative to positive.
D5	Find the absolute maximum or	Use relative extrema techniques to find relative max/mins.
	minimum of $f(x)$ on $[a, b]$.	Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
	[] [[] [] [] [] [] [] [] [] [The largest of these is the absolute maximum and the
		smallest of these is the absolute minimum
D6	Find range of $f(x)$ on $(-\infty,\infty)$.	Use relative extrema techniques to find relative max/mins.
		Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		Then examine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.
D7	Find range of $f(x)$ on $[a, b]$	Use relative extrema techniques to find relative max/mins.
		Evaluate f at these values. Then examine $f(a)$ and $f(b)$.
		Then examine $f(a)$ and $f(b)$.
D8	Show that Rolle's Theorem holds for	Show that f is continuous and differentiable on $[a, b]$. If
	f(x) on $[a, b]$.	f(a) = f(b), then find some c on [a, b] such that $f'(c) = 0$.
D9	Show that the Mean Value Theorem	Show that f is continuous and differentiable on $[a, b]$. If
	holds for $f(x)$ on $[a, b]$.	f(a) = f(b), then find some c on $[a, b]$ such that
		$f'(c) = \frac{f(b) - f(a)}{c}$
D10	Given a green of f'(w) determine	$f'(c) = \frac{f(b) - f(a)}{b - a}$ Make a sign chart of $f'(x)$ and determine the intervals
D10	Given a graph of $f'(x)$, determine	where $f'(x)$ is positive and reactive
	intervals where $f(x)$ is	where $f'(x)$ is positive and negative.
D11	increasing/decreasing. Determine whether the linear	Find slope $m = f/(r)$. Then use point slope equation:
	approximation for $f(x_1 + a)$ over-	Find slope $m = f'(x_i)$. Then use point slope equation:
		$y - y_1 = m(x - x_1)$. Evaluate this line for y at $x = x_1 + a$.
	estimates or under-estimates $f(x_1 + a)$.	If $f''(x_1) > 0$, f is concave up at x_1 and the linear
		approximation is an underestimation for $f(x_1 + a)$.
		$f''(x_1) < 0$, f is concave down at x_1 and the linear
		approximation is an overestimation for $f(x_1 + a)$.
	1	

D12	Find intervals where the slope of $f(x)$	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	is increasing.	values of $f''(x)$ and make a sign chart of $f''(x)$ looking for
		positive intervals.
D13	Find the minimum slope of $f(x)$ on	Find the derivative of $f'(x)$ which is $f''(x)$. Find critical
	[a, b].	values of $f''(x)$ and make a sign chart of $f''(x)$. Values of
		x where $f''(x)$ switches from negative to positive are
		potential locations for the minimum slope. Evaluate $f'(x)$
		at those values and also $f'(a)$ and $f'(b)$ and choose the
		least of these values.

E. Integral Calculus

	When you see the words	This is what you think of doing
E1	Approximate $\int_{a}^{b} f(x) dx$ using left	$A = \left(\frac{b-a}{n}\right) [f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-1})]$
	Riemann sums with <i>n</i> rectangles.	
E2	Approximate $\int_{a}^{b} f(x) dx$ using right	$A = \left(\frac{b-a}{n}\right) [f(x_1) + f(x_2) + f(x_3) + \dots + f(x_n)]$
	Riemann sums with <i>n</i> rectangles.	
E3	Approximate $\int_{a}^{b} f(x) dx$ using	Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only
	midpoint Riemann sums.	calculate 3 midpoint rectangles.
E4	Approximate $\int_{a}^{b} f(x) dx$ using	$A = \left(\frac{b-a}{2n}\right) \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)\right]$
	trapezoidal summation.	This formula only works when the base of each trapezoid is the same. If not, calculate the areas of individual trapezoids.
E5	Find $\int_{b}^{a} f(x) dx$ where $a < b$.	$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$
E8	Meaning of $\int_{a}^{x} f(t) dt$.	The accumulation function – accumulated area under function f starting at some constant a and ending at some variable x .
E9	Given $\int_{a}^{b} f(x) dx$, find $\int_{a}^{b} [f(x) + k] dx$.	$\int_{a}^{b} \left[f(x) + k \right] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} k dx$
	$\int_{a}^{b} [f(x) + k] dx.$	
E10	Given the value of $F(a)$ where the antiderivative of f is F , find $F(b)$.	Use the fact that $\int_{a}^{b} f(x) dx = F(b) - F(a)$ so
		$F(b) = F(a) + \int_{a}^{b} f(x) dx$. Use the calculator to find the
		definite integral.
E11	Find $\frac{d}{dx} \int_{a}^{x} f(t) dt$.	$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x).$ The 2nd Fundamental Theorem.
E12	Find $\frac{d}{dx} \int_{a}^{x} f(t) dt$. Find $\frac{d}{dx} \int_{a}^{g(x)} f(t) dt$.	$\frac{d}{dx} \int_{a}^{g(x)} f(t) dt = f(g(x)) \cdot g'(x).$ The 2nd Fundamental Theorem.

F. Applications of Integral Calculus

	when you see the words	This is what you think of doing
F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	$\int_{a}^{b} f(x) dx$
F2	Find the area between $f(x)$ and $g(x)$.	Find the intersections, a and b of $f(x)$ and $g(x)$. If
		$f(x) \ge g(x)$ on [a,b], then area $A = \int_a^b [f(x) - g(x)] dx$.
F3	Find the line $x = c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	$\int_{a}^{c} f(x) dx = \int_{c}^{b} f(x) dx \text{ or } \int_{a}^{b} f(x) dx = 2 \int_{a}^{c} f(x) dx$
F4	Find the volume when the area under $f(x)$ is rotated about the <i>x</i> -axis on the interval $[a, b]$.	Disks: Radius = $f(x)$: $V = \pi \int_{a}^{b} [f(x)]^{2} dx$
F5	Find the volume when the area	Washers: Outside radius = $f(x)$. Inside radius = $g(x)$.
	between $f(x)$ and $g(x)$ is rotated about	Establish the interval where $f(x) \ge g(x)$ and the values of
	the <i>x</i> -axis.	a and b, where $f(x) = g(x)$. $V = \pi \int_a^b \left(\left[f(x) \right]^2 - \left[g(x) \right]^2 \right) dx$
F6	Given a base bounded by	Base = $f(x) - g(x)$. Area = base ² = $[f(x) - g(x)]^2$.
	f(x) and $g(x)$ on $[a, b]$ the cross	h
	sections of the solid perpendicular to	Volume = $\int_{0}^{\infty} [f(x) - g(x)]^{2} dx$
F.7	the x-axis are squares. Find the volume.	
F7	Solve the differential equation	Separate the variables: x on one side, y on the other with the dx and dy in the numerators. Then integrate both sides,
	$\frac{dy}{dx} = f(x)g(y).$	remembering the $+C$, usually on the x -side.
F8	Find the average value of $f(x)$ on	b
	[a, b].	$\int f(x) dx$
	[,].	$F_{avg} = \frac{a}{b-a}$
F9	Find the average rate of change of	$d \stackrel{t_2}{\sim} u$
	$F'(x)$ on $[t_1,t_2]$.	$\frac{d}{dt}\int F'(x) dx$ $F'(t) = F'(t)$
	, , , <u>-</u>	$\frac{\frac{d}{dt} \int_{t_1}^{t_2} F'(x) dx}{t_2 - t_1} = \frac{F'(t_2) - F'(t_1)}{t_2 - t_1}$
F10	<i>y</i> is increasing proportionally to <i>y</i> .	1
	y 12 mereusing proportionally to y.	$\frac{dy}{dt} = ky$ which translates to $y = Ce^{kt}$
F11	Given $\frac{dy}{dx}$, draw a slope field.	Use the given points and plug them into $\frac{dy}{dx}$, drawing little
	$\frac{dx}{dx}$, that a slope field.	a_{λ}
		lines with the calculated slopes at the point.

G. Particle Motion and Rates of Change

	when you see the words	This is what you think of doing
G1	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	$v(t) = s'(t) \qquad a(t) = v'(t) = s''(t)$
G2	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	$s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C.
G3	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find $s(t)$.	$v(t) = \int a(t) dt + C_1. \text{ Plug in } v(0) = 0 \text{ to find } C_1.$ $s(t) = \int v(t) dt + C_2. \text{ Plug in } s(0) \text{ to find } C_2.$
G4	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at $t = k$.	Find $v(k)$ and $a(k)$. If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.
G5	Given the position function $s(t)$, find the average velocity on $[t_1, t_2]$.	Avg. vel. = $\frac{s(t_2) - s(t_1)}{t_2 - t_1}$ Inst. vel. = $s'(k)$.
G6	Given the position function $s(t)$, find the instantaneous velocity at $t = k$.	Inst. vel. = $s'(k)$.
G7	Given the velocity function $v(t)$ on $[t_1,t_2]$, find the minimum acceleration of a particle.	Find $a(t)$ and set $a'(t) = 0$. Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also t_1 and t_2 to find the minimum.
G8	Given the velocity function $v(t)$, find the average velocity on $[t_1, t_2]$.	$Avg. vel. = \frac{\int_{t_1}^{t_2} v(t) dt}{t_2 - t_1}$ $Displacement = \int_{t_1}^{t_2} v(t) dt$
G9	Given the velocity function $v(t)$, determine the difference of position of a particle on $[t_1, t_2]$.	Displacement = $\int_{t_1}^{t_2} v(t) dt$
G10	Given the velocity function $v(t)$, determine the distance a particle travels on $[t_1, t_2]$.	Distance = $\int_{t_1}^{t_2} v(t) dt$
G11	Calculate $\int_{t_1}^{t_2} v(t) dt$ without a calculator.	Set $v(t) = 0$ and make a sign charge of $v(t) = 0$ on $[t_1, t_2]$. On intervals $[a, b]$ where $v(t) > 0$, $\int_a^b v(t) dt = \int_a^b v(t) dt$ On intervals $[a, b]$ where $v(t) < 0$, $\int_a^b v(t) dt = \int_b^a v(t) dt$
G12	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $[0,t_1]$.	Generate a sign chart of $v(t)$ to find turning points. $s(t) = \int v(t) dt + C$. Plug in $s(0)$ to find C . Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$.

	when you see the words	This is what you think of doing
G13	The volume of a solid is changing at the rate of	$\frac{dV}{dt} = \dots$
G14	The meaning of $\int_{a}^{b} R'(t) dt$.	This gives the accumulated change of $R(t)$ on $[a, b]$. $\int_{a}^{b} R'(t) dt = R(b) - R(a) \text{ or } R(b) = R(a) + \int_{a}^{b} R'(t) dt$
G15	Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons/min on $\begin{bmatrix} t_1, t_2 \end{bmatrix}$ a) The amount of water in the tank at $t = m$ minutes. b) the rate the water amount is changing at $t = m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.	a) $g + \int_{0}^{m} [F(t) - E(t)] dt$ b) $\frac{d}{dt} \int_{0}^{m} [F(t) - E(t)] dt = F(m) - E(m)$ c) set $F(m) - E(m) = 0$, solve for m , and evaluate $g + \int_{0}^{m} [F(t) - E(t)] dt$ at values of m and also the endpoints.