A. Precalculus Type problems

When you see the words ...
This is what you think of doing

A1	Find the zeros of $f(x)$.	
A2	Find the intersection of $f(x)$ and $g(x)$.	
A3	Show that $f(x)$ is even.	
A4	Show that $f(x)$ is odd.	
A5	Find domain of $f(x)$.	
A6	Find vertical asymptotes of $f(x)$.	
A7	If continuous function $f(x)$ has $f(a)<k$ and $f(b)>k$, explain why there must be a value c such that $a<c<b$ and $f(c)=k$.	

B. Limit Problems

When you see the words ...
This is what you think of doing

B1	Find $\lim _{x \rightarrow a} f(x)$.	
B2	Find $\lim _{x \rightarrow a} f(x)$ where $f(x)$ is a piecewise function.	
B3	Show that $f(x)$ is continuous.	
B4	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.	
B5	Find horizontal asymptotes of $f(x)$.	

When you see the words ...
This is what you think of doing

C1	Find the derivative of a function using the derivative definition.	
C2	Find the average rate of change of f on $[a, b]$.	
C3	Find the instantaneous rate of change of f at $x=a$.	
C4	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f^{\prime}(c)$ where c is a value between a and b.	
C5	Find the equation of the tangent line to f at $\left(x_{1}, y_{1}\right)$.	
C6	Find the equation of the normal line to f at $\left(x_{1}, y_{1}\right)$.	
C7	Find x-values of horizontal tangents to f.	
C8	Find x-values of vertical tangents to f.	
C9	Approximate the value of $f\left(x_{1}+a\right)$ if you know the function goes through point $\left(x_{1}, y_{1}\right)$.	
C10	Find the derivative of $f(g(x))$. C11	The line $y=m x+b$ is tangent to the graph of $f(x)$ at $\left(x_{1}, y_{1}\right)$.
C12	Find the derivative of the inverse to $f(x)$ at $x=a$.	
C13	Given a piecewise function, show it is differentiable at $x=a$ where the function rule splits.	

D. Applications of Derivatives

When you see the words ...
This is what you think of doing

D1	Find critical values of $f(x)$.	
D2	Find the interval(s) where $f(x)$ is increasing/decreasing.	
D3	Find points of relative extrema of $f(x)$.	
D4	Find inflection points of $f(x)$.	
D5	Find the absolute maximum or minimum of $f(x)$ on $[a, b]$.	
D6	Find range of $f(x)$ on $(-\infty, \infty)$. D7 Find range of $f(x)$ on $[a, b]$ D8 Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	
D9	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	
D10	Given a graph of f ' (x), determine intervals where $f(x)$ is increasing/decreasing.	
D11	Determine whether the linear approximation for $f\left(x_{1}+a\right)$ over- estimates or under-estimates $f\left(x_{1}+a\right)$.	
D12	Find intervals where the slope of $f(x)$ is increasing.	
D13	Find the minimum slope of $f(x)$ on [a, $b]$.	

E. Integral Calculus

When you see the words ...
This is what you think of doing

E1	Approximate $\int_{a}^{b} f(x) d x$ using left Riemann sums with n rectangles.	
E2	Approximate $\int_{a}^{b} f(x) d x$ using right Riemann sums with n rectangles.	
E3	Approximate $\int_{a}^{b} f(x) d x$ using midpoint Riemann sums.	
E4	Approximate $\int_{a}^{b} f(x) d x$ using trapezoidal summation.	
E5	Find $\int_{b}^{a} f(x) d x$ where $a<b$.	
E8	Meaning of $\int_{a}^{x} f(t) d t$.	
E9	Given $\int_{a}^{b} f(x) d x$, find $\int_{a}^{b}[f(x)+k] d x$.	
E10	Given the value of $F(a)$ where the antiderivative of f is F, find $F(b)$.	
E11	Find $\frac{d}{d x} \int_{a}^{x} f(t) d t$.	
E12	Find $\frac{d}{d x} \int_{a}^{g(x)} f(t) d t$.	

F. Applications of Integral Calculus

When you see the words ...
This is what you think of doing

F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	
F2	Find the area between $f(x)$ and $\mathrm{g}(x)$.	
F3	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	

When you see the words ...

F4	Find the volume when the area under $f(x)$ is rotated about the x-axis on the interval $[a, b]$.			
F5	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.			
F6	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross sections of the solid perpendicular to the x-axis are squares. Find the volume.			
F7	Solve the differential equation dy $d x$$(x) g(y)$.		\quad	F8
:---				
Find the average value of $f(x)$ on				
$[a, b]$.				

G. Particle Motion and Rates of Change

When you see the words ...
This is what you think of doing

G1	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	
G2	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	
G3	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find $s(t)$.	
G4	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at $t=k$.	
G5	Given the position function $s(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.	
G6	Given the position function $s(t)$, find the instantaneous velocity at $t=k$.	

G7	Given the velocity function $v(t)$ on $\left[t_{1}, t_{2}\right]$, find the minimum acceleration of a particle.			
G8	Given the velocity function $v(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$			
G9	Given the velocity function $v(t)$, determine the difference of position of a particle on $\left[t_{1}, t_{2}\right]$.			
G10	Given the velocity function $v(t)$, determine the distance a particle travels on $\left[t_{1}, t_{2}\right]$.			
G11	$\left.$Calculate $\int_{t_{1}}$ $t_{1}$$v(t) \right\rvert\, d t$ without a			
calculator.			\quad	G12
:---				
Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $\left[0, t_{1}\right]$.				
G13				
The volume of a solid is changing at the rate of \ldots				
G14				
The meaning of $\int_{a}^{b} R^{\prime}(t) d t$.				
G15				
Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons $/$ min and emptied at the rate of $E(t)$ gallons $/$ min on $\left[t_{1}, t_{2}\right]$ a) The amount of water in the tank at $t=m$ minutes. b) the rate the water amount is changing at $t=m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.				

A. Precalculus Type problems

When you see the words ...
This is what you think of doing

A1	Find the zeros of $f(x)$.	Set function equal to 0. Factor or use quadratic equation if quadratic. Graph to find zeros on calculator.
A2	Find the intersection of $f(x)$ and $g(x)$.	Set the two functions equal to each other. Find intersection on calculator.
A3	Show that $f(x)$ is even.	Show that $f(-x)=f(x)$. This shows that the graph of f is symmetric to the y-axis.
A4	Show that $f(x)$ is odd.	Show that $f(-x)=-f(x)$. This shows that the graph of f is symmetric to the origin.
A5	Find domain of $f(x)$.	Assume domain is $(-\infty, \infty)$. Restrict domains: denominators \neq 0, square roots of only non-negative numbers, logarithm or natural log of only positive numbers.
A6	Find vertical asymptotes of $f(x)$.	Express $f(x)$ as a fraction, express numerator and denominator in factored form, and do any cancellations. Set denominator equal to 0.
A7	If continuous function $f(x)$ has $f(a)<k$ and $f(b)>k$, explain why there must be a value c such that $a<c<b$ and $f(c)=k$.	This is the Intermediate Value Theorem.

B. Limit Problems

When you see the words ...

B1	Find $\lim _{x \rightarrow a} f(x)$.	Step 1: Find $f(a)$. If you get a zero in the denominator, Step 2: Factor numerator and denominator of $f(x)$. Do any cancellations and go back to Step 1. If you still get a zero in the denominator, the answer is either $\infty,-\infty$, or does not exist. Check the signs of $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ for equality.
B2	Find $\lim _{x \rightarrow a} f(x)$ where $f(x)$ is a piecewise function.	Determine if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ by plugging in a to $f(x), x<a$ and $f(x), x>a$ for equality. If they are not equal, the limit doesn't exist.
B3	Show that $f(x)$ is continuous.	Show that 1) $\lim _{x \rightarrow a} f(x)$ exists 2) $f(a)$ exists 3) $\lim _{x \rightarrow a} f(x)=f(a)$
B4	Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.	Express $f(x)$ as a fraction. Determine location of the highest power: Denominator: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0$ Both Num and Denom: ratio of the highest power coefficients Numerator: $\lim _{x \rightarrow \infty} f(x)= \pm \infty$ (plug in large number)
B5	Find horizontal asymptotes of $f(x)$.	$\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$

C. Derivatives, differentiability, and tangent lines

When you see the words ...
This is what you think of doing

C1	Find the derivative of a function using the derivative definition.	Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ or $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
C2	Find the average rate of change of f on $[a, b]$.	Find $\frac{f(b)-f(a)}{b-a}$
C3	Find the instantaneous rate of change of f at $x=a$.	Find $f^{\prime}(a)$
C4	Given a chart of x and $f(x)$ and selected values of x between a and b, approximate $f^{\prime}(c)$ where c is a value between a and b.	Straddle c, using a value of $k \geq c$ and a value of $h \leq c . f^{\prime}(c) \approx \frac{f(k)-f(h)}{k-h}$
C5	Find the equation of the tangent line to f at $\left(x_{1}, y_{1}\right)$.	Find slope $m=f^{\prime}\left(x_{i}\right)$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$
C6	Find the equation of the normal line to f at $\left(x_{1}, y_{1}\right)$.	Find slope $m \perp=\frac{-1}{f^{\prime}\left(x_{i}\right)}$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$
C7	Find x-values of horizontal tangents to f.	Write $f^{\prime}(x)$ as a fraction. Set numerator of $f^{\prime}(x)=0$.
C8	Find x-values of vertical tangents to f.	Write $f^{\prime}(x)$ as a fraction. Set denominator of $f^{\prime}(x)=0$.
C9	Approximate the value of $f\left(x_{1}+a\right)$ if you know the function goes through point $\left(x_{1}, y_{1}\right)$.	Find slope $m=f^{\prime}\left(x_{i}\right)$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$. Evaluate this line for y at $x=x_{1}+a$. Note: The closer a is to 0 , the better the approximation will be. Also note that using concavity, it can be determine if this value is an over or under-approximation for $f\left(x_{1}+a\right)$.
C10	Find the derivative of $f(g(x))$.	This is the chain rule. You are finding $f^{\prime}(g(x)) \cdot g^{\prime}(x)$.
C11	The line $y=m x+b$ is tangent to the graph of $f(x)$ at $\left(x_{1}, y_{1}\right)$.	Two relationships are true: 1) The function f and the line share the same slope at x_{1} : $m=f^{\prime}\left(x_{1}\right)$ 2) The function f and the line share the same y-value at x_{1}.
C12	Find the derivative of the inverse to $f(x)$ at $x=a$.	Follow this procedure: 1) Interchange x and y in $f(x)$. 2) Plug the x-value into this equation and solve for y (you may need a calculator to solve graphically) 3) Using the equation in 1) find $\frac{d y}{d x}$ implicitly. 4) Plug the y-value you found in 2) to $\frac{d y}{d x}$
C13	Given a piecewise function, show it is differentiable at $x=a$ where the function rule splits.	First, be sure that $f(x)$ is continuous at $x=a$. Then take the derivative of each piece and show that $\lim _{x \rightarrow a^{-}} f^{\prime}(x)=\lim _{x \rightarrow a^{+}} f^{\prime}(x)$.

D. Applications of Derivatives

When you see the words ...
This is what you think of doing

D1	Find critical values of $f(x)$.	Find and express $f^{\prime}(x)$ as a fraction. Set both numerator and denominator equal to zero and solve.
D2	Find the interval(s) where $f(x)$ is increasing/decreasing.	Find critical values of $f^{\prime}(x)$. Make a sign chart to find sign of $f^{\prime}(x)$ in the intervals bounded by critical values. Positive means increasing, negative means decreasing.
D3	Find points of relative extrema of $f(x)$.	Make a sign chart of $f^{\prime}(x)$. At $x=c$ where the derivative switches from negative to positive, there is a relative minimum. When the derivative switches from positive to negative, there is a relative maximum. To actually find the point, evaluate $f(c)$. OR if $f^{\prime}(c)=0$, then if $f^{\prime \prime}(c)>0$, there is a relative minimum at $x=c$. If $f^{\prime \prime}(c)<0$, there is a relative maximum at $x=c$. ($2^{\text {nd }}$ Derivative test).
D4	Find inflection points of $f(x)$.	Find and express $f^{\prime \prime}(x)$ as a fraction. Set both numerator and denominator equal to zero and solve. Make a sign chart of $f^{\prime \prime}(x)$. Inflection points occur when $f^{\prime \prime}(x)$ witches from positive to negative or negative to positive.
D5	Find the absolute maximum or minimum of $f(x)$ on $[a, b]$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$. The largest of these is the absolute maximum and the smallest of these is the absolute minimum
D6	Find range of $f(x)$ on $(-\infty, \infty)$.	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$. Then examine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
D7	Find range of $f(x)$ on $[a, b]$	Use relative extrema techniques to find relative max/mins. Evaluate f at these values. Then examine $f(a)$ and $f(b)$. Then examine $f(a)$ and $f(b)$.
D8	Show that Rolle's Theorem holds for $f(x)$ on $[a, b]$.	Show that f is continuous and differentiable on $[a, b]$. If $f(a)=f(b)$, then find some c on $[a, b]$ such that $f^{\prime}(c)=0$.
D9	Show that the Mean Value Theorem holds for $f(x)$ on $[a, b]$.	Show that f is continuous and differentiable on $[a, b]$. If $f(a)=f(b)$, then find some c on $[a, b]$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
D10	Given a graph of $f^{\prime}(x)$, determine intervals where $f(x)$ is increasing/decreasing.	Make a sign chart of $f^{\prime}(x)$ and determine the intervals where $f^{\prime}(x)$ is positive and negative.
D11	Determine whether the linear approximation for $f\left(x_{1}+a\right)$ overestimates or under-estimates $f\left(x_{1}+a\right)$.	Find slope $m=f^{\prime}\left(x_{i}\right)$. Then use point slope equation: $y-y_{1}=m\left(x-x_{1}\right)$. Evaluate this line for y at $x=x_{1}+a$. If $f^{\prime \prime}\left(x_{1}\right)>0, f$ is concave up at x_{1} and the linear approximation is an underestimation for $f\left(x_{1}+a\right)$. $f^{\prime \prime}\left(x_{1}\right)<0, f$ is concave down at x_{1} and the linear approximation is an overestimation for $f\left(x_{1}+a\right)$.

D12	Find intervals where the slope of $f(x)$ is increasing.	Find the derivative of $f^{\prime}(x)$ which is $f^{\prime \prime}(x)$. Find critical values of $f^{\prime \prime}(x)$ and make a sign chart of $f^{\prime \prime}(x)$ looking for positive intervals.
D13	Find the minimum slope of $f(x)$ on $[a, b]$.	Find the derivative of $f^{\prime}(x)$ which is $f^{\prime \prime}(x)$. Find critical values of $f^{\prime \prime}(x)$ and make a sign chart of $f^{\prime \prime}(x)$. Values of x where $f^{\prime \prime}(x)$ switches from negative to positive are potential locations for the minimum slope. Evaluate $f^{\prime}(x)$ at those values and also $f^{\prime}(a)$ and $f^{\prime}(b)$ and choose the least of these values.

E. Integral Calculus

When you see the words ...
This is what you think of doing

E1	Approximate $\int_{a}^{b} f(x) d x$ using left Riemann sums with n rectangles.	$A=\left(\frac{b-a}{n}\right)\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots+f\left(x_{n-1}\right)\right]$
E2	Approximate $\int_{a}^{b} f(x) d x$ using right Riemann sums with n rectangles.	$A=\left(\frac{b-a}{n}\right)\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+\ldots+f\left(x_{n}\right)\right]$
E3	Approximate $\int_{a}^{b} f(x) d x$ using midpoint Riemann sums.	Typically done with a table of points. Be sure to use only values that are given. If you are given 7 points, you can only calculate 3 midpoint rectangles.
E4	Approximate $\int_{a}^{b} f(x) d x$ using trapezoidal summation.	$A=\left(\frac{b-a}{2 n}\right)\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$ This formula only works when the base of each trapezoid is the same. If not, calculate the areas of individual trapezoids.
E5	Find $\int_{b}^{a} f(x) d x$ where $a<b$.	$\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$

F. Applications of Integral Calculus

When you see the words ...
This is what you think of doing

F1	Find the area under the curve $f(x)$ on the interval $[a, b]$.	$\int_{a}^{b} f(x) d x$
F2	Find the area between $f(x)$ and $\mathrm{g}(x)$.	Find the intersections, a and b of $f(x)$ and $g(x)$. If $f(x) \geq g(x)$ on $[\mathrm{a}, \mathrm{b}]$, then area $A=\int^{b}[f(x)-g(x)] d x$.
F3	Find the line $x=c$ that divides the area under $f(x)$ on $[a, b]$ into two equal areas.	$\int_{a}^{c} f(x) d x=\int_{c}^{b} f(x) d x \text { or } \int_{a}^{b} f(x) d x=2 \int_{a}^{c} f(x) d x$
F4	Find the volume when the area under $f(x)$ is rotated about the x-axis on the interval $[a, b]$.	Disks: Radius $=f(x): V=\pi \int_{a}^{b}[f(x)]^{2} d x$
F5	Find the volume when the area between $f(x)$ and $g(x)$ is rotated about the x-axis.	Washers: Outside radius $=f(x)$. Inside radius $=g(x)$. Establish the interval where $f(x) \geq g(x)$ and the values of a and b, where $f(x)=g(x) . V=\pi \int^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x$
F6	Given a base bounded by $f(x)$ and $g(x)$ on $[a, b]$ the cross sections of the solid perpendicular to the x-axis are squares. Find the volume.	$\begin{aligned} & \text { Base }=f(x)-g(x) . \text { Area }=\text { base }^{2}=[f(x)-g(x)]^{2} \\ & \text { Volume }=\int_{a}^{b}[f(x)-g(x)]^{2} d x \end{aligned}$
F7	Solve the differential equation $\frac{d y}{d x}=f(x) g(y)$.	Separate the variables: x on one side, y on the other with the $d x$ and $d y$ in the numerators. Then integrate both sides, remembering the $+C$, usually on the x-side.
F8	Find the average value of $f(x)$ on $[a, b]$.	$F_{\text {avg }}=\frac{\int_{a}^{b} f(x) d x}{b-a}$
F9	Find the average rate of change of $F^{\prime}(x)$ on $\left[t_{1}, t_{2}\right]$.	$\frac{\frac{d}{d t} \int_{t_{1}}^{t_{2}} F^{\prime}(x) d x}{t_{2}-t_{1}}=\frac{F^{\prime}\left(t_{2}\right)-F^{\prime}\left(t_{1}\right)}{t_{2}-t_{1}}$
F10	y is increasing proportionally to y.	$\frac{d y}{d t}=k y$ which translates to $y=C e^{k t}$
F11	Given $\frac{d y}{d x}$, draw a slope field.	Use the given points and plug them into $\frac{d y}{d x}$, drawing little lines with the calculated slopes at the point.

G. Particle Motion and Rates of Change

When you see the words ...
This is what you think of doing

G1	Given the position function $s(t)$ of a particle moving along a straight line, find the velocity and acceleration.	$v(t)=s^{\prime}(t) \quad a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
G2	Given the velocity function $v(t)$ and $s(0)$, find $s(t)$.	$s(t)=\int v(t) d t+C$. Plug in $s(0)$ to find C.
G3	Given the acceleration function $a(t)$ of a particle at rest and $s(0)$, find $s(t)$.	$\begin{aligned} & v(t)=\int a(t) d t+C_{1} . \text { Plug in } v(0)=0 \text { to find } C_{1} . \\ & s(t)=\int v(t) d t+C_{2} . \text { Plug in } s(0) \text { to find } C_{2} . \end{aligned}$
G4	Given the velocity function $v(t)$, determine if a particle is speeding up or slowing down at $t=k$.	Find $v(k)$ and $a(k)$. If both have the same sign, the particle is speeding up. If they have different signs, the particle is slowing down.
G5	Given the position function $s(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.	$\text { Avg. vel. }=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}$
G6	Given the position function $s(t)$, find the instantaneous velocity at $t=k$.	Inst. vel. $=s^{\prime}(k)$.
G7	Given the velocity function $v(t)$ on $\left[t_{1}, t_{2}\right]$, find the minimum acceleration of a particle.	Find $a(t)$ and set $a^{\prime}(t)=0$. Set up a sign chart and find critical values. Evaluate the acceleration at critical values and also t_{1} and t_{2} to find the minimum.
G8	Given the velocity function $v(t)$, find the average velocity on $\left[t_{1}, t_{2}\right]$.	Avg. vel. $=\frac{\int_{t_{1}}^{t_{2}} v(t) d t}{t_{2}-t_{1}}$
G9	Given the velocity function $v(t)$, determine the difference of position of a particle on $\left[t_{1}, t_{2}\right]$.	$\text { Displacement }=\int_{t_{1}}^{t_{2}} v(t) d t$
G10	Given the velocity function $v(t)$, determine the distance a particle travels on $\left[t_{1}, t_{2}\right]$.	$\text { Distance }=\int_{t_{1}}^{t_{2}}\|v(t)\| d t$
G11	Calculate $\int_{t_{1}}^{t_{2}}\|v(t)\| d t$ without a calculator.	Set $v(t)=0$ and make a sign charge of $v(t)=0$ on $\left[t_{1}, t_{2}\right]$. On intervals $[a, b]$ where $v(t)>0, \int_{a}^{b}\|v(t)\| d t=\int_{a}^{b} v(t) d t$ On intervals $[a, b]$ where $v(t)<0, \int_{a}^{b}\|v(t)\| d t=\int_{b}^{a} v(t) d t$
G12	Given the velocity function $v(t)$ and $s(0)$, find the greatest distance of the particle from the starting position on $\left[0, t_{1}\right]$.	Generate a sign chart of $v(t)$ to find turning points. $s(t)=\int v(t) d t+C$. Plug in $s(0)$ to find C. Evaluate $s(t)$ at all turning points and find which one gives the maximum distance from $s(0)$.

G13	The volume of a solid is changing at the rate of ...	$\frac{d V}{d t}=\ldots$
G14	The meaning of $\int_{a}^{b} R^{\prime}(t) d t$.	This gives the accumulated change of $R(t)$ on $[a, b]$. $\int_{a}^{b} R^{\prime}(t) d t=R(b)-R(a)$ or $R(b)=R(a)+\int_{a}^{b} R^{\prime}(t) d t$
G15	Given a water tank with g gallons initially, filled at the rate of $F(t)$ gallons/min and emptied at the rate of $E(t)$ gallons $/ \mathrm{min}$ on $\left[t_{1}, t_{2}\right]$ a) The amount of water in the tank at t $=m$ minutes. \mathbf{b}) the rate the water amount is changing at $t=m$ minutes and c) the time t when the water in the tank is at a minimum or maximum.	a) $g+\int_{0}^{m}[F(t)-E(t)] d t$ b) $\frac{d}{d t} \int_{0}^{m}[F(t)-E(t)] d t=F(m)-E(m)$ c) set $F(m)-E(m)=0$, solve for m, and evaluate $g+\int_{0}^{m}[F(t)-E(t)] d t$ at values of m and also the endpoints.

